

True integration of renewables into the Utility Network

Tim de Grauw (FIEAust, GAICD) November 2014

www.APDpower.com.au

- What is true integration?
- Current approach & constraints
- The economic considerations
- The required approach
- Future Direction
- Questions

True integration – the Definition!

- True integration:
 - 1) Achieving the maximum renewable generation (no constraints)
 - 2) Achieving the maximum CO₂ reduction (not shifting the location)
 - 3) Assist with dealing with peak energy demand (major capital \$)
 - 4) Achieving the above at least cost / most economical
- Looking at two cases:
 - 1) Small Scale
 - 2) Large scale

Small Scale – Embedded Renewables

Statistics EE

• 98,675 Connected Premises

- 2 Hydro 4.2kW in total
- 71 Wind 573kW in total
- 98,602 Solar PV 364MW

Semi Scheduled and Non Scheduled

- Bagasse 68MW
- Diesel 50MW
- Landfill Gas 5MW
- Natural Gas 10MW
- Wind 144MW
- Solar 265MW
- Hydro 165MW
- Total 706MW

Indication of embedded generation in EE

(Reference: Essential Energy – Embedded Generation Presentation)

Drake Landing 100% Solar Community

Residential Solar PV

(Reference: Essential Energy – VARMO Presentation)

100% PV : NO COMPENSATION

Residential Solar – 100% PV – No Compensation/Limiting (Reference: Essential Energy – VARMO Presentation)

100% PV + VOLTAGE LEVELLING

Residential Solar PV – with Compensation

(Reference: Essential Energy – VARMO Presentation)

Residential Solar PV vs Storage

(Reference: Professor Tony Vasallo – Batteries and PV's Presentation)

Residential Solar PV vs Storage

(Reference: Professor Tony Vasallo – Batteries and PV's Presentation)

Landfill Gas – Eastern Creek (>5MW)

Large Scale – Embedded Renewables

Large Scale Solar – Nyngan Solar Farm – 102MW (Reference - Essential Energy – Nyngan Solar Farm Presentation)

- > 250 Ha (1.0 km x 2.5 km)
- > 1.35 Million Cells
- > 152 inverters rated 0.67 MW each
- > Connected in pairs to 1.5 MVA step up transformer
- > 4 x 33 kV strings
- > 120 MVA 132/33 kV transformer

Large Scale Solar – Nyngan Solar Farm (Reference - Essential Energy – Nyngan Solar Farm Presentation)

Large Scale Wind – Capital Hill - 140MW (View over Lake George)

Large Scale Wind – Gullen Range, Goulburn - 165MW

Open Cycle Gas Generation – Colongra (Munmorah region – 660MW = 4x165MW)

Combined Cycle Gas Generation – Darling Downs (630MW = 3x120MW+ 270MW)

Coal Fired Generation – Vales Point (1320 MW = 2 x 660MW)

70% of 0.65 Tonnes CO₂/MWH OCG= 0.45 Tonnes CO₂/MWH

Compare with 0.4 Tonnes CO₂/MWH for CCG

30% Wind

Reference: Dr Robert Barr – EESA National President

Reference: Dr Robert Barr – EESA National President

Current Approach – Energy Blend / Portfolio (Courtesy Dr Robert Barr – EESA National President)

Fuel	Tonnes of CO ₂ /MWh	\$ Capital Construction Cost/MW	Dispatch Capable	Ability to Rapidly Change Output
Brown Coal	1.4	High	Yes	No
Black Coal	0.9	High	Yes	No
Natural Gas Open Cycle Gas Turbine	0.65	Low	Yes	Yes
Natural Gas Combined Cycle Gas Turbine	0.4	Medium	Yes	Moderate
Hydro	0	Extremely high	Yes	Yes
Wind	0	High	No	Nil
Solar PV	0	Very high	No	Nil

The Required Approach for True Integration

- Small Scale
 - 1. Economic Battery Storage (targeting under \$400 / kWh), or
 - 2. Economic small scale 'Statcom' (compensation) for voltage control
- Large Scale
 - 1. Large Scale Economic Storage
 - 2. More economic Statcom technology (compensation)
 - 3. Alternative Clean Energy solutions that are:
 - a) Despatchable (generation when required to match load)
 - b) Low CO₂ per MWh
 - c) Low Capital Cost (to have competitive energy globally)
 - d) Can be geographically located where required

Questions?