

Microbial modulation of methane emission in landfill sites

Anh.S.Hoang¹, Nanthi Bolan¹, Balaji Seshadri¹, Kartik Venkatraman²

anh.s.hoang@uon.edu.au

- ¹Global centre for Environmental Remediation (GCER), The University of Newcastle
- ² Acacia Waste Management Solution Pty Ltd, PO Box 1944 Bairnsdale VIC 3875

Landfill as a source of methane emission

- Landfilling of solid waste will inevitably remain the most widely utilised management method in Australia despite a significant effort in the reduction, reuse and recycling.
- Methane (CH₄), with a global warming potential of 25 times greater than carbon dioxide (CO₂) (IPCC, 2007), is the most dominant gas emitted in most landfill sites through microbial methanogenic process.
- Although CH₄ generation in large landfills can be collected by active CH₄ extraction systems, substantial amounts of CH₄ are still emitted to the atmosphere, especially in small-scale landfills in regional areas.
- Global CH₄ emissions from landfill sites are estimated to contribute 30-70 Tg, which is around 11% of the total anthropogenic CH₄ emission to the atmosphere (Figure 1).

Methane production and consumption process in landfill sites

- Landfill sites produce Greenhouse Gases (GHG) such as CH₄ and CO₂, and odorous compounds such as volatile fatty acids (VFAs) as a result of the decomposition of putrescible waste (Figure 2).
- At landfill sites, as CH₄ gas diffuses into soil covers, aerobic methane-oxidizing bacteria utilise it as a main substrate, releasing CO₂ and H₂O (Figure 3).

Phytocapping as methane emission mitigation

- Phytocapping is gaining popularity to mitigate the environmental impacts of leachate and greenhouse gas emission from landfill sites.
- Phytocapping of landfills has proved to support CH₄ oxidation in the soil covers through aeration in the root zone and by diffusion of exudates that enhance methanotrops in the soil layers.
- In this system, soil and vegetation grossly help maintain the hydrological balance and simultaneously oxidise CH₄ in the soil layers (Figure 4, 5).

Figure 1. Global anthropogenic emissions of Methane by Source (U.S.EPA, 2010)

Figure 2. Methane emission and oxidation in cover soil (Chiemchaisri, 2011)

Figure 4. Various processes to reduce leachate generation in phytocapping landfills (Venkatraman, 2010).

Figure 3. The pathways of CH₄ oxidation

Figure 5. Phytocap technology can enhance CH₄ bio-oxidation by increasing methanotrophic bacteria activity in rhizospheric soil.

Aim of research

- To improve the efficiency of CH₄ oxidation in landfill cover using phytocapping assisted by soil amendments.
- To test the interactive effect between soil amendments and vegetation on microbial CH₄ oxidation to determine optimal conditions for methanotrophic bacteria.

Methodology

- Closed Chamber technique will be used to monitor CH₄ emission from landfill sites capped using phytocapping technology.
- The effect of rhizosphere on CH₄ oxidation will be examined using microcosm study.

Expected outcomes

- Identification of factors to improve soil chemical and physical properties to enhance CH₄ oxidation.
- Identification of vegetation species that effectively contribute to methane oxidation in soil.
- Optimisation of soil and phytocapping vegetation conditions to enhance CH₄ oxidation at landfill sites.

References

- Bolan, N.S., et al. (2012) Landfills as a biorefinary to produce biomass and capture biogas. Bioresour. Technol. 135, 578-587.
- Lamb, D.T., et al. (2014) Phytocapping: An Alternative Technology for the Sustainable Management of Landfill Sites, Critical Reviews in Environmental Science and Technology, 44:6, 561-637.