

Engineering & Construction

Backfill or not?? Water management considerations during rehabilitation

Chris Gimber - Principal Environmental Engineer, KBR Brad O'Reilly - Environmental Engineer, New Hope Group

Introduction

- Voids are an inherent part of open cut operations
- Decision required about how to rehabilitate voids
- Goals:
 - Safe
 - Non-polluting
 - Stable Landform
 - Sustains Agreed Land Use

- Australian Centre for Sustainable Mining Practices (ACSMP) – Jan 2016
 - In Hunter Valley currently plans for 30 final voids
 - Combined footprint of 3,840 hectares (~38 km2)
- Reported plans for final void use was varied:
 - backfilled and rehabilitation to a stable landform (n=6)
 - coal and tailings placement (n=7)
 - water storages (n=6)
 - others (undecided)

Final void management decisions

• Start with end use in mind

КВ

NEW HOPE GROUP

Final void management decisions

Void management at closure – hierarchy (Queensland Rehabilitation Guidelines, EHP):

- Generally acceptable
 - Backfill to original ground level
 - safe to people and animals
 - Contains good quality water
 - Battered slopes with vegetative cover
 - Alternative high value use (e.g. water reservoir)

Void management at closure – hierarchy (Queensland Rehabilitation Guidelines, EHP):

- May be acceptable
 - Build safety barriers
 - Void acts as a sink or reservoir for contaminated water with minor risk to stock or wildlife
 - Battered moderate slopes with little vegetation
 - Steep slopes in competent rock
 - Waste disposal
 - Industrial or commercial land use
 - Unused void with low risk

Void management at closure – hierarchy (Queensland Rehabilitation Guidelines, EHP):

- Rarely acceptable
 - Poor water quality that poses a high risk to stock or wildlife
 - Accumulates hazardous material

Final void management decisions

Challenges with backfilling:

- Dewatering
- Compaction
- Surface water management

Case study: New Oakleigh

Engineering & Construction

1990: Pre-mining

Engineering & Construction

2005: Active mining

2010: Active mining

Engineering & Construction

2012: End of mining

Engineering & Construction

2012: End of mining

- Relevant factors:
 - Proximity to Rosewood township and other neighbours active community interest
 - Steep catchments (~100m fall from top of catchment to bottom, steep grades)
 - Significant topsoil deficit (~30 ha of residual areas for which topsoil was not available)
 - Underground workings in/near ML potential issues with groundwater
 - Water harvesting licence
 - Final landuse grazing

Decision time

- Void backfilled to form free-draining landform
- Approximately 4 million m³ was moved to backfill the ~80m deep void to the designed levels, taking ~2 years
- Site re-contoured to the final landform
- Topsoil imported
- Seed and gypsum applied
- Biosolids used good results

Implementation

Engineering & Construction

2013: Commence backfilling

Implementation

2014: Bulk earthworks complete

Implementation

2015: Final grading, topsoiling and seeding

- Previously controlled discharge site with large water retention capacity (in final void)
- Transitioned to passive discharge site
- Schedule bulk earthworks and site stabilisation, while managing discharge ⇒ requires careful planning

Water management

Water management

- Sediment containment key issue during rehabilitation
- Sediment basin (containment of 10 year ARI, 24 hr storm, 100 ha catchment) = 90 ML
- Implications:
 - Major disturbance during construction
 - Water harvesting in perpetuity
- Alternatives:
 - Pump and store in other voids (need large sump and high pump rate)
 - High Efficient Sediment (HES) basin volume required around 25% capacity of traditional sediment basin

24

Engineering & Construction

Water management

Engineering & Construction

- The best final void management approach depends on local factors ⇒ every site is different
- Backfilling may be appropriate in some circumstances
- Backfilling requires careful planning from a water management perspective
- Emerging erosion & sediment control technologies have application to the mining industry during rehabilitation activities

Engineering & Construction

Chris Gimber Principal Environmental Engineer, KBR <u>chris.gimber@kbr.com</u> 0419 734 969

Brad O'Reilly

Environmental Engineer, New Hope Group boreilly@newhopegroup.com.au 0418 404 876

