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Background 

Wind Energy 

• Wind energy, one of the fastest growing renewable energy sources for power 
generation, now meets a significant percentage of electrical demand worldwide.  

• Along with the introduction of various emission reduction schemes, the cumulative 
installed wind capacity has increased markedly since the last decade around the 
world. 

• Governments and organizations are promoting the construction of large wind farms, 
encouraging power companies and utilities with generous subsidies and with 
regulatory support. 

• The ever-increasing level of wind energy with uncertainty and variability brings 
potential risk to power system operations. 

• Furthermore, after direct participating in real-time electricity market, the high 
volatility of electricity price will further intensify the risk of wind energy. 
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Background 

Wind Energy in Australia 

• Australian continent boasts some of the best wind resources in the world, primarily 
located along coastal regions and extended hundreds of kilometres to inland. 

• The Australian government acknowledges the importance of renewable energy 
sources and has issued a series of national policies to promote research, 
development, commercialization of renewable energy projects, and to improve 
transition of latest research results into industrial applications. 

• These policies, particularly the emission trading scheme and the renewable energy 
target are expected to underpin solid progress of wind energy industry in Australia. 

• Furthermore, some power utilities have started grid upgrade for renewable energy 
integration. An essential part of the upgrade work is to strengthen or replace the 
existing facilities to accommodate the increasing wind power generation. 
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Background 

Source: http://www.renewablessa.sa.gov.au/investor-information/resources/ 



Background 

 Selected Research Fields in Wind Power 
• Wind resource assessment 

• Wind farm planning 

1. Potential location selection; 

2. Environmental impacts assessment; 

3. Turbine model selection; 

4. Wake effects modelling; 

5. Micro-siting optimization; 

6. Electrical layout optimization. 

• Wind farm dispatch 

1. Wind power forecast; 

2. Flexible operational planning framework; 

3. Wind farm dispatch considering carbon tax; 
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Background 

 Selected Research Fields in Wind Power (Cont.) 
4. Coordinate dispatch with energy storage system; 

5. Optimal allocation of energy storage system; 

6. Operational risk mitigation with insurance strategy. 

• Power system security 

1. Low-voltage ride-through (LVRT) capability; 

2. Dynamic security assessment; 

3. Sub-synchronous resonance. 
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Wind Resource Assessment 
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Wind Forecasting and Wind Farm Planning Software 

OptiWind 
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Wind Resource Assessment 

 Statistics Analysis (Wind Speed) 
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Wind Resource Assessment 

 Statistics Analysis (Wind Speed) 
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Wind Resource Assessment 

 Statistics Analysis (Wind Direction) 
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Wind Farm Planning 

 Power Output Estimation 

• Wind Turbine Selection 

 Up to 20 kinds of wind turbines; 

 Power output ranges from 800KW to 3.6MW; 

 Power output curve; 

• Surface Roughness Selection 

 Up to 17 kinds of surface roughness; 

 Roughness ranges from 0.0001 (water area) to 1 (city); 

• Hub Height Speed Estimation 

 Observation station altitude, measuring height, hub height; 

 Air density, wind speed, surface roughness; 

• Mean Power Output Calculation 
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Wind Farm Planning 
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Index Turbine Model Diameter (m) Hub Height (m) 
1 Nordex N50 (800KW) 50 50 
2 Nordex N60 (1300KW) 60 50 
3 Vestas V52 (850KW) 52 55 
4 Vestas V66 (1650KW) 66 67 
5 Vestas V66 (1750KW) 66 67 
6 Vestas V66 (2000KW) 66 67 
7 Vestas V80 (1800KW) 80 67 
8 Vestas V80 (2000KW) 80 67 
9 Vestas V80 (2000KW Offshore) 80 67 

10 Vestas V90 (1800KW) 90 80 
11 Vestas V90 (2000KW) 90 80 
12 Vestas V90 (3000KW) 90 80 
13 Vestas V112 (3000KW Offshore) 112 100 
14 SWT-2.3-82 (2300KW) 82.4 80 
15 SWT-2.3-93 (2300KW) 93 80 
16 SWT-3.6-107 (3600KW) 107 80 
17 Sinovel-30-90 (3000KW) 90 80/90 
18 Sinovel-30-100 (3000KW) 100 80/90/100/110 
19 Sinovel-30-105 (3000KW) 105 80/90/100/110 
20 Sinovel-30-113 (3000KW) 113 90/100/110 
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z0 [m] Terrain Surface Characteristics 
1.00 City 
0.80 Forest 
0.50 Suburbs 
0.40 --- 
0.30 Shelter belts 
0.20 Many trees and/or bushes 
0.10 Farmland with closed appearance 
0.05 Farmland with open appearance 
0.03 Farmland with very few buildings/trees 
0.02 Airport areas with buildings and trees 
0.01 Airport runway areas 

0.008 Mown grass 
0.005 Bare soil (smooth) 
0.001 Snow surfaces (smooth) 

0.0003 Sand surfaces (smooth) 
0.0002 --- 
0.0001 Water areas (lakes, fjords, open sea) 



Wind Farm Planning 

 Wake Effect Impacts 

• Low capacity 

• Limited wind farm site 

• Wake losses (reduction of wind speed and increase of turbulence downwind of a 
turbine) 

• Intermittent and stochastic nature 
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Wind Farm Planning 

 Wake Effect Modeling 

• Wake loss is an important factor in 
the design of wind turbine micro-
siting optimization. 

• Normally, when a uniform 
incoming wind encounters a wind 
turbine, a linearly expanding wake 
behind the turbine occurs. 

• In a wind farm, the turbines can be 
affected by the wakes of several 
turbines located upstream. 
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Wind Farm Planning 

 Wake Effect Modeling (Cont.) 

• There are three different mutual effects, fully effect, no effect, and partial effect. 
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Wind Farm Planning 

 Wake Effect Modeling (Cont.) 

• Fitness Function 

 Maximize mean power output; 

 Or minimize mean power losses. 

• Challenges 

 Kinds of constraints; 

 Mixed with trigonometric function; 

 Mixed with definite integration; 

 Difficult to be solved by conventional approaches (linear programming, nonlinear 
programming, Quadratic programming). 
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Mean Power Output = 8.1751 MW 
Mean Power Losses = 0.4628 MW 

Mean Power Output = 8.2034 MW 
Mean Power Losses = 0.4345 MW 

Mean Power Output = 8.2852 MW 
Mean Power Losses = 0.3527 MW 

Mean Power Output = 7.8700 MW 
Mean Power Losses = 0.7679 MW 

Mean Power Output = 7.9883 MW 
Mean Power Losses = 0.6496 MW 

Mean Power Output = 8.0725 MW 
Mean Power Losses = 0.5654 MW 9.76% 7.00% 



Wind Farm Planning 

 Micro-siting Optimization (Cont.) 

• Aside from the two constraints discussed above, the following criteria should be 
considered: 

 Wind predictability: Improper site selection may magnify the intense of wind power 
fluctuations, leading to inaccurate wind resource prediction, ending up with being penalized 
by electricity market; 

 Site accessibility: Improper site selection may cause extra costs for equipment transportation, 
installation, and maintenance; 

 Terrain complexity: Overlooking may cause extra costs relative to more transmission lines 
and towers to support stronger mechanical stress; 

 Flora and Fauna: Violation may cause damage to species in imminent danger; 

 Obstacles and infrastructures: Improper design may cause extra costs related to signalization 
equipment (aviation) or obstacle avoiding (heritage, transportation, rivers, 
telecommunications, etc.). 
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Wind Farm Planning 

 Micro-siting Optimization (Cont.) 
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Wind Farm Planning 

 Electrical Layout Optimization 

• Electrical layout design is an engineering task that optimizes the equipment 
installation and maintenance costs subject to geographic, environmental, social, and 
legal constraints. 

• The planner decides the path and areas crossed by the facilities taking existing 
constraints into account: 

 For small wind farms, the electrical layout problem can be solved by hand, or by using 
exhaust search techniques that try all possible cable types and layouts. 

 However, this problem quickly becomes infeasible, due to the increasing number of wind 
turbines. The cost of a cable connecting one turbine to another depends on the type of cable 
used, and the terrain where it crossed. 

• We developed an efficient optimal electrical layout design approach for large-scale 
offshore wind farms to minimize the capital cost, power loss cost, and network 
maintenance cost, taking into account the constraints of wind turbines, electrical 
cables, substations. 
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Wind Farm Planning 

 Electrical Layout Optimization (Cont.) 

• The topography of terrain is modelled using a grid of units, where each unit 
represent a certain type of terrain and will be assigned a weight (cost coefficient) by 
decision makers according to its characteristic. 
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Wind Farm Planning 

 Electrical Layout Optimization (Cont.) 

• Constraints: 

 Active power flow constraints: 

 

 Reactive power flow constraints: 

 

 Capability limits of cables: 

 

 Bus voltage limits: 

 

 Radial constraints: 
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 Wind Power Forecast 

• Long-term Forecast 

 Numerical Weather Prediction (NWP) model; 

• Short-term Forecast 

 K-nearest Neighbor (KNN); 

 Generalized Autoregressive Conditional Heteroskedasticity (GARCH); 

 Wavelet Decomposition (WAD); 

 RBF Neural Network (RBFNN); 

 Support Vector Machine (SVM); 

 Relevance Vector Machine (RVM). 
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 Wind Power Forecast (Cont.) 
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 Flexible Operational Planning Framework 
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 Flexible Operational Planning Framework (Cont.) 
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Wind Farm Dispatch 

 Wind Farm-BESS Dispatch Scheme 

• Advantages 

 Proven and reliable (most RE systems use them); 

 Many solution options (Lead-acid, NaS, NiCd, NiZn, NiMH, and Li-ion). 

• Disadvantages 

 Relatively high capital cost; 

 Heavy (low energy density); 

 Require regular maintenance; 

 Low charging/discharging efficiency (70-80%); 

 Short lifespan (5-10 yrs.). 
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 Wind Farm-BESS Dispatch Scheme (Cont.) 

• The benefits of this idea are, the wind power output can be controlled; the 
maximum capacity of battery storage system can be reduced, the optimal size can be 
estimated; the lifetime of energy storage device can be prolonged. 
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