Comparative Evaluation of Sediment Yield from Native and Fluvial Geomorphic-Rehabilitation Watersheds

Mine Rehabilitation Conference 2017

© Naturally Spatial and GeoFluv[™]

What is Fluvial Geomorphic Rehabilitation?

• The essence of the approach is to identify the type of drainage network that forms over time, given: the site's earth materials, relief, climate, and slope stability to achieve a stable landform, and to design and build that landform.

Study Background

- From 1999-2008 the San Juan Coal Company (SJCC) reclaimed 743 ha at the La Plata Mine using fluvial geomorphic rehabilitation design methods
- Qualitative evaluations support fluvial geomorphic rehabilitation methods at minimising erosion and sedimentation rates, in comparison to natural sites
- In 2011 SJCC began research to quantify sediment yield (t/ha/yr) from geomorphic landforms and surrounding undisturbed lands
- Three selected sub-watersheds,
 - N Native, undisturbed by mining
 - MV Moderately vegetated, top-dressed geomorphic design
 - WV Well vegetated, top-dressed geomorphic design

La Plata Mine, New Mexico

© Google Earth, 2017

La Plata Mine, New Mexico

© Google Earth, 2017

Study Methodology Overview

- Temporary dams designed to impound runoff from a 2-yr, 1-hr storm
- Erosion pins used to measure sediment deposition
- Precipitation recorded by the La Plata Mine meteorological station and supplemental site-specific gauges
- Data included multiple precipitation events sufficient to cause sediment transport

Sediment Yield Results

- N Native, undisturbed site: <u>10.5</u> t/ha/yr
- MV Moderately vegetated, top-dressed geomorphic design: <u>9.09</u> t/ha/yr
- WV Well vegetated, top-dressed geomorphic design: <u>6.22</u> t/ha/yr

Measured Study Period Sediment Yield 12 May 2012 - 25 Oct 2013, 525 days

Installation of Sample Sites

Native site during
survey with sediment
pins installed

WV site after construction of temporary sediment dam

Sample Sites

MV - Site with moderate vegetation

Factors to Consider

- Watershed size Research shows sediment yields are lower as watershed area increases due to internal sediment storage – smaller watersheds minimise this effect
- Watershed type Semi-arid regions with relatively high sediment yields versus grassed and forested watersheds with expected lower sediment yield rates
- Watershed precipitation Differing climatic conditions and sitespecific rainfall characteristics and relationships could affect sediment yield rates. This semi-arid site is in the highest sedimentproducing precipitation range
- Landform maturity Designs based on geomorphically *immature* landforms will generate greater rates of sediment; Designs based on geomorphically *mature* reference landforms are expected to generate less sediment

Recommendations for Future Study

- Contribute to the knowledge base for best practice rehabilitation methods
- Study done in an extremely erosive environment results are supported by other qualitative and quantitative monitoring, i.e. Mojave desert
- Increase number of sites and study other site types
- Conduct studies in other regions internationally

Rehabilitation Landform Performance

Using the GeoFluv method at La Plata,

"The proposed drainage density design exceeded the pre-mine drainage density (because of loss of bedrock control in channels), helping MMD to recognise that we were negotiating with people who "get it". The more conservative design then experienced a 200-yr, 2-hr storm event, on freshly soiled reclamation, and did not result in more erosion than would be expected on undisturbed land."

(Clarke, D., Mining and Minerals Division, 2008).

Qualitative observation of San Juan Mine geomorphic rehabilitation,

"The most remarkable result was that the impounded water resulting from the rain event was clear. This is the first time I have witnessed clear water coming off reclaim in 18 years of inspecting."

(Mine inspector, San Juan Inspection Report, New Mexico Mining and Minerals Division, 2002).

Inspection after 200-yr, 2-hr storm

Contacts

Nicholas Bugosh - GeoFluv[™], Ohio, USA www.geofluv.com nicholas@geofluv.com

Edward Epp - Environmental Specialist, BHP New Mexico Coal Company, USA

Grant Dickins - Naturally Spatial, VIC

www.naturallyspatial.com.au grant.dickins@naturallyspatial.com.au

José F. Martín Duque -Department of Geodynamics, Complutense University of Madrid, Spain www.ucm.es/geodinamica josefco@geo.ucm.es www.restauraciongeomorfologica.com & Nuria waste dump